Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+I- contact ion pair dissolved in supercritical ammonia.

نویسندگان

  • G Sciaini
  • R Fernández-Prini
  • D A Estrin
  • E Marceca
چکیده

Vertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the NH3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+I- ion pair, because in this case a tight solvation structure, formed by four NH3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of ion pairing on the UV-spectral behavior of KI dissolved in supercritical NH3: from vapor phase to condensed liquid.

The UV-spectroscopic behavior of KI dissolved in supercritical ammonia enabled us to identify two species that contribute to the optical absorption depending on the fluid density rho1 and the temperature T. At low rho1 and high T, contact ion pairs (CIPs) prevail, while at high density of ammonia, solvent separated ion pairs (SSIPs) and free iodide ions dominate the optical absorption of the so...

متن کامل

Spectroscopic Studies on Charge-Transfer Complexation of Iodine with Dibenzo-15-crown-5 and Benzo-12-crown-4 in Chloroform, Dichloromethane and 1,2-Dichloroethane

The formation of charge-transfer complexation between dibenzo-15-crown-5 (DB15C5) and benzo-12-crown-4 (B12C4) (Donor) and iodine is investigated spectrophotometrically in three chlorinated solvents,chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solution at 25°C. The change in polarityof the solvent also doesn’t affect the stoichiometry of the complexes. Values of formation cons...

متن کامل

Thermodynamic study of ion- association in KNO3 solution in the mixed solvent (water +methanol)

The solubility of KNO3 in the mixed solvent (water 85%+methanol 15%) were determined by using solvent evaporating method at different temperatures (25, 30, 40, 50, 60 ;C). In addition the equilibrium constant of ion pair formation, KIP, for K+NO3 – ion-pair on the basis of Fuoss contact ion pair model was calculated. Upon choosing the extended Debye-Hückel model for estimating the mean activity...

متن کامل

Dynamic Equilibria of Short-Range Electrostatic Interactions at Molecular Interfaces of Protein–DNA Complexes

Intermolecular ion pairs (salt bridges) are crucial for protein-DNA association. For two protein-DNA complexes, we demonstrate that the ion pairs of protein side-chain NH3+ and DNA phosphate groups undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. While the crystal structures of the complexes show only the solve...

متن کامل

Theoretical Studies of Solvent Effects on the Electronic Properties of 1, 3-Bis [(Furan-2-yl) Methylene] Urea and Thiourea

The synthesis and characterization of 1, 3-bis [(furan-2-yl) methylene] urea (BFMU) and 1, 3-bis [furan-2-yl) methylene] thiourea (BFMT) have been reported by our research team. The effects of solvents polarity on their electronic transition energies (HOMO-LUMO) and associated qualitative structure activity relationship parameters (i.e. log P, ionization energies and global hardness) were inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 17  شماره 

صفحات  -

تاریخ انتشار 2007